2'-O-methyl, 2'-O-ethyl oligoribonucleotides and phosphorothioate oligodeoxyribonucleotides as inhibitors of the in vitro U7 snRNP-dependent mRNA processing event.

نویسندگان

  • M Cotten
  • B Oberhauser
  • H Brunar
  • A Holzner
  • G Issakides
  • C R Noe
  • G Schaffner
  • E Wagner
  • M L Birnstiel
چکیده

We describe the synthesis of 2'-O-methyl, 2'-O-ethyl oligoribonucleotides and phosphorothioate oligodeoxyribonucleotides and demonstrate their utility as inhibitors of the in vitro U7 snRNP-dependent mRNA processing event. These 2'-O-modified compounds were designed to possess the binding affinity of an RNA molecule towards a complementary RNA target with an enhanced stability against nucleases. The 2'-O-methyl and 2'-O-ethyl antisense compounds function as potent inhibitors of the reaction at 1-10 nM, approximately 5-fold more effective than a natural antisense RNA molecule and requiring an approximate 5-fold excess over the target RNA for 80% inhibition of the processing reaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Polyadenylation Factor CPSF-73 Is Involved in Histone-Pre-mRNA Processing

During 3' end processing, histone pre-mRNAs are cleaved 5 nucleotides after a conserved stem loop by an endonuclease dependent on the U7 small nuclear ribonucleoprotein (snRNP). The upstream cleavage product corresponds to the mature histone mRNA, while the downstream product is degraded by a 5'-3' exonuclease, also dependent on the U7 snRNP. To identify the two nuclease activities, we carried ...

متن کامل

Antisense 2'-O-alkyl oligoribonucleotides are efficient inhibitors of reverse transcription

Reverse transcription is one step of the retroviral development which can be inhibited by antisense oligonucleotides complementary to the RNA template. 2'-O-Alkyl oligoribonucleotides are of interest due to their nuclease resistance, and to the high stability of the hybrids they form with RNA. Oligonucleotides, either fully or partly modified with 2'-O-alkyl residues, were targeted to an RNA te...

متن کامل

2'-O-methyl-modified phosphorothioate antisense oligonucleotides have reduced non-specific effects in vitro.

Antisense oligodeoxynucleotides (ODNs) have biological activity in treating various forms of cancer. The antisense effects of two types of 20mer ODNs, phosphorothioate-modified ODNs (S-ODNs) and S-ODNs with 12 2'-O-methyl groups (Me-S-ODNs), targeted to sites 109 and 277 of bcl-2 mRNA, were compared. Both types were at least as effective as G3139 (Genta, Inc.) in reducing the level of Bcl-2 pro...

متن کامل

The 68 kDa subunit of mammalian cleavage factor I interacts with the U7 small nuclear ribonucleoprotein and participates in 3′-end processing of animal histone mRNAs

Metazoan replication-dependent histone pre-mRNAs undergo a unique 3'-cleavage reaction which does not result in mRNA polyadenylation. Although the cleavage site is defined by histone-specific factors (hairpin binding protein, a 100-kDa zinc-finger protein and the U7 snRNP), a large complex consisting of cleavage/polyadenylation specificity factor, two subunits of cleavage stimulation factor and...

متن کامل

U7 small nuclear ribonucleoprotein represses histone gene transcription in cell cycle-arrested cells.

Histone gene expression is tightly coordinated with DNA replication, as it is activated at the onset of S phase and suppressed at the end of S phase. Replication-dependent histone gene expression is precisely controlled at both transcriptional and posttranscriptional levels. U7 small nuclear ribonucleoprotein (U7 snRNP) is involved in the 3'-end processing of nonpolyadenylated histone mRNAs, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 19 10  شماره 

صفحات  -

تاریخ انتشار 1991